8.333 Fall 2025 Recitation 1-2: Probability Theory

Jessica Metzger
jessmetz@mit.edu | Office hours: Tuesday 4-5pm (8-777)

Statistical mechanics differs from other disciplines (e.g. classical mechanics) by taking a probabilistic approach to
describing physical systems. We will thus use the first two recitations as an overview of probability theory.

These notes are largely a conglomeration of the previous years’ recitation notes by Julien Tailleur, Amer Al-Hiyasat,
and Sara Dal Cengio.

References. All the essential information in these recitations can be found in Chapter 2 of Mehran Kardar’s Statistical
Physics of Particles. For a more extensive reference on probability theory /statistics, I recommend Statistical Inference
(Casella & Berger).
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I. PROBABILITY: GENERAL NOTIONS

Whenever we talk about probabilities, we implicitly invoke the precise mathematical notion of a probability space:
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I PROBABILITY: GENERAL NOTIONS

Definition I.1: Probability Space

A probability space (S, P) consists of a space of outcomes S and a probability measure P. For any event
A C 8§, the probability measure defines its probability P(A), which must satisfy the following:

1. Positivity: for all A C S, we have P(A) > 0.

2. Additivity: If AN B =0, then P(AU B) = P(A) + P(B).

3. Normalization: P(S) = 1.

These 3 conditions are known as the “Kolmogorov axioms of probability”. They have some elementary and intuitive
consequences, such as:

e The empty set @ has probability zero: P(&) = 0.

e For any event A, its complement obeys P(S\ A) =1 — P(A).

e P(AUB) = P(A)+ P(B) — P(An B) for arbitrary A,B C S.
It’s usually easy enough to prove these and similar statements using venn diagrams. Note that for discrete probability
distributions, we will often use the shorthand notation for the probability of a singleton set P({z}) = P(z).

The outcomes of a probability space are called random variables:

Definition I.2: Random Variable (RV)

A random variable (RV) z belonging to a probability space (S, P) is an object that takes on values from S
with probability P.

An important remark:

Remark I.1: Random variables vs. their outcomes

Mathematicians make a distinction between a random variable (which they usually denote by a capital letter
like X) and a particular realization/outcome of that random variable (which they usually denote by a lowercase
letter like x). In most disciplines of physics, there is usually no need to make this distinction, so we don’t, and
call both a random variable and its realizations z.

On a similar note, one must be careful with the notion of random variable. We can have two random variables
z and y corresponding to the same probability space that have different realizations. These are then called
identically-distributed. However, they can have any degree of correlation or decorrelation with each other.

A. Conditional probabilities

The notion of statistical independence is precisely defined as follows:

Definition I.3: Statistical independence

Two events A and B are called statistically independent if

P(ANB) = P(A)P(B) . 1)

Sometimes we are interested in the probability of some event B, given that another event A will also occur. This is
represented by the conditional probability.
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Definition I.4: Conditional probability

Suppose P is a probability measure on a space of outcomes S. For any events A, B C S, the probability of B
conditioned on A is given by

P(AN B)

P(B|A) = P(A)

(2)

In particular, if A and B are statistically independent, then P(B|A) = P(B); i.e. A has no bearing on the likelihood
of B.

One straightforward consequence of the definition of conditional probability is Bayes’ theorem.

Theorem 1.1: Bayes’ theorem
Consider a probability space (S, P). For any events A, B C S,
P(A|B)P(B) = P(B|A)P(A) . (3)

B. Change of variables

If we have a function mapping S to some other space, what are the statistics of its image, the random variable
y = f(z)? The answer is given by this relatively straightforward lemma:

Lemma I.1: Change of variable

Consider the probability space (Si, Py) with a random variable z. Suppose there is an arbitrary set Sy and a
function f :S; — Ss. Define the new probability measure P, such that for all subsets A C S,

Py(A) = Pi(f71(4)) . (4)

Then f(z) is a random variable for the probability space (Sz, P).

(The preimage f~1(A) of A under f is defined as all the elements x € S such that f(z) € A.)

We are now done with probability in a generic setting. Before restricting ourselves to probabilities over the real
numbers, we will look at a few examples.

C. Examples

Here is an example of a continuous probability space:

Example I.1: Darts

You are a darts player who is not very good. Suppose you always land the dart on the board, but within the
board, the placement is completely random. Then we can let S be the board, and define P such that for any
patch of the board A, P(A) = Area(A). Then, your dart throw is a random variable on the probability space
(S, P).

And here is an example of a discrete probability space:
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Example 1I.2: Two interacting spins

Now consider two spins s1, s which can be either up (4) or down (—). Then the outcome space is
S = {(317 52) ’ 51,82 € {_7 +}} = {(_a _)a (_7 +)7 (+7 _)7 (+a +)} . (5)

Suppose that the spins have aligning interactions: configurations where the spins are aligned a factor of w? more
likely than configurations where they are anti-aligned. If we define the probability measure P as

w
P((+7+)) - P((_a _)) - mv P((+a _)) - P(<_7+)) — a5/ . .1\ (6)
then the state (s1, s2) is a random variable belonging to the probability space (S, P).

Conditional probabilities. The two spins are not statistically independent: if we let Ay = {(+,+), (+,—)} be the
event that s; is up and Ay = {(+,+), (—,+)} be the event that s is up, we have

w

w ’U)71 2 2
P(A1)P(A,) = <2<w =i +w_1)) - (;) - i £ P(A N As) . (8)

Thus A; and A5 do not satisfy the definition of statistical independence 1.3, and we can say that the spins are
not independent.

We can calculate the conditional probability that spin 1 is up given spin 2 is up using Def. 1.4:

P = =5y ~ B D)+ P(1)  wrw T

9)

If w > 1 (correlated spins), then P(A;|A2) > 1/2; i.e. knowing spin 2 is up means spin 1 is more likely to be up.

II. INTEGER RANDOM VARIABLE

Consider the discrete probability space (Z, P), where Z = {...,—2,—-1,0,1,2,...} is the set of integers, with random
variable n. We will use this simple setting to define notions of probability like moments, cumulants, etc. before we
move onto continuous probability spaces in Sec. III.

A. Moments

You are probably familiar with the notion of expectation value of a random variable:

Definition II.1: Expectation value in discrete probability spaces

Suppose (Z, P) is a probability space with random variable n, and F' : Z — R is some function. Then the
expectation value of the random variable F(n) is defined as

(F(n) =3 P(m)F(n). (1)

neZ

One commonly-used expectation value is the moments of a random variable:
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Definition I1.2: Moments of a discrete random variable

Suppose (Z, P) is a probability space with random variable n. Let £ > 0 be an integer. Then, the £th moment
pe of n is the expectation value of n’:

pe = (nf) = Z P(n)nt . (2)

neEZ
These can often be easily calculated using a probability space’s characteristic function
Definition I1.3: Characteristic (moment-generating) function of a discrete probability space

Suppose (Z, P) is a probability space with random variable n. Its characteristic function, or moment-
generating function, P is

P(k) = (e7%n) = ZP(n)e‘ik" . (3)

nez

Here, k is simply a dummy variable. Why is P called the moment-generating function? Expanding its definition, we
have

~ %) i ¢ oS} i ¢ ¢ .
P(k)=> ( g!k) > Pt =) ( ;) e = pe = (E)(ik)> P(k) (4)

=0 nez n=0 k=0

Note that determining the characteristic function P(k) is sufficient to determine P(n), and vice versa. If two proba-
bility measures have the same characteristic function, then they are equal.

B. Cumulants

The cumulant is a similar concept that will be very useful in stat mech:

Definition II.4: Cumulant of a discrete probability space
Suppose (Z, P) is a probability space with characteristic function P(k) The £th cumulant s, is defined as

km = (2 = (mik))ém P(k)

For this reason, In p(k) is called the cumulant-generating function. Through a somewhat long proof (which we
include in Appendix A), we can show that the moments can be written as sums of the cumulants via a diagrammatic
shorthand. To calculate the ¢th moment as a sum of cumulants, consider ¢ points and the different ways of grouping
them into p; bins of size 1, pa bins of size 2, etc. For each such grouping, add [],, xEr» W The combinatorial

factor represents the the degeneracy of this grouping. This has a straightforward diagrammatic representation, which
is shown in Fig. 1 for the first four moments.

()

k=0

These equations can then be inverted to give the cumulants in terms of the moments. For future reference, here are
the first four cumulants of a random variable x:

(T)e = (z) (mean) (6)
(2%) = (2%) — (x)® (variance) (7)
(@%)e = (2°) = 3(2®) () + 2(z)? (skewness) (8)
(Y. = (x) — 4(z®) (@) — 3(x*)? + 12(2®) () — 6(x)* (kurtosis) . (9)

Now we will look at an example of a discrete probability distribution, the binomial distribution.
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e x) = (x),.

<x?>= ées + oo (x?) =(x2), + (x)2,

<x> = et gt et () =(x?), +3(x), (x) 4+ (x)].

<xts= B8 4L+ 046 on + 88 () = () +4(), () +3 (2 +6(x), (x)?+ (x)?

FIG. 1:Left: the diagrammatic representation of the moments of a random variable x as sums of its
cumulants (proof given in Appendix A). Right: the corresponding algebraic expressions. [Fig. 2.5
of Kardar’s Statistical Physics of Particles]

C. Example: the binomial distribution

The binomial distribution is a discrete distribution that models the outcome of multiple (biased) coin flips. Precisely,
consider the probability space ({0,1,2,..., N}, P) where N is a positive integer, and P is defined as

P = (N)ra-gr (10)

where ¢ € [0, 1], and (JT\Z) = ﬁln), is the binomial coefficient. This models the outcome of N flips of a biased coin

with probability ¢ of landing on heads: the number of “heads” is a random variable in this probability space.
The characteristic function is then

N N

P =3 (V) ara-a e =3 (V) a-o¥ e trmti= (-arae Y.

n=0 n=0

so the cumulant generating function is In ]5(k) =NlIn (1 +q(e”* — 1)) Thus, we can calculate the first few cumulants:
<n>(':NQ7 <n2>(':NQ(17Q) ) (12)

The mean and variance are both proportional to N. Thus the standard deviation goes like v N. However, the
standard error of the mean (or relative uncertainty) decreases with N.

Definition IL.5: Variance, standard deviation, and relative uncertainty
The variance ¢? of a random variable is its first cumulant: 02 = (2?)..
The standard deviation o of a random variable is the square root of its variance: o = \/(z?)..

The relative uncertainty is the standard deviation divided by the mean o/(x) = \/(2?)./(z)e.

Thus, for instance, when you flip very many fair coins (where ¢ = 1/2), even though its variance increases like N, the
proportion of “heads” approaches 1/2.

Example I1.1: Binomial distribution

For a positive integer N and ¢ € [0, 1], the binomial distribution P over the space of outcomes {0,1,2,..., N}
and its characteristic function P are

o= () ra-arn B= e - )Y (13)

Its first two cumulants are

<n>c = Ng, <n2>c = NQ(l -q) . (14)

[End of recitation 1]
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III. ONE CONTINUOUS RANDOM VARIABLE

Now we will restrict ourselves to probability spaces whose outcomes are the real numbers; i.e. § = R. Because
summation is not defined on this space, it is necessary to define the notion of probability density function in order to
calculate moments, cumulants, etc. using integration.

A. Definitions

Definition III.1: Cumulative distribution function (CDF)
For a probability space (R, P), the cumulative distribution function (CDF) @ : R — R is defined as

Q(x) = P((—o00,2]) - (1)

i.e. Q(z) is the probability that a random variable from this probability space is < .

Definition II1.2: Probability density function

For a probability space (R, P) with cumulative distribution function @ and RV z, the probability density
function (PDF) p: R — R is defined as

p(z) = %(f)v ie. Q) =/I p(y)dy - (2)

There are some important things to understand about the probability density p:
Remark III.1: Understanding p

e Relation to P. The probability density p is related to the probability measure P via the relationship
defined on sets:

ACR = /Ap(m)d;v = P(A). (3)

It’s important to understand that they are different, and defined on different domains (P is a function on
the subsets of R; p is a function on R).

e Approximate pointwise relationship to P. However, for a very small interval [zg, 2o + Az], we can
write the approximate relation (following from Defs. II1.1-II1.2)

p(xo) Az ~ P([xq, 0 + Ax]) . (4)
e Values. While the probability measure P only takes values < 1, the probability density p may be > 1.

As long as p(x) is positive for all z, and the total integral is normalized to [; p(x)dz = 1, anything else is
allowed.

e Units. While the probability measure P is unitless, the probability density p has units [1/x].
The expectation value on the real numbers is given by:

Definition III.3: Expectation value over real numbers

Consider a random variable z from the probability space (R, P), and a function F : R — R. The expectation
value of the random variable F'(z) can in fact be written as

(Fa)) = [ F@)pla)da . )
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This is analogous to the discrete version, Def. I1.1.

B. Change of variables

The change of variables definition from before (Lemma. I.1) tells us how the probability measure transforms. But
how does the probability density transform? First we consider one-to-one maps.

Lemma III.1: Change of variable for the probability density

Consider a probability space (R, P;) with probability density p; and random variable z. Consider a one-to-one
function f : R — R, which defines a new random variable y = f(z) belonging to the probability space (R, Py),
with P, defined in Lem. I.1. The corresponding probability density of y is then given by

() . ) = @)
NG AT ©)

p2(y) = p1 (ST W) | () ()]

If f weren’t one-to-one, then f~!(y) would be a set of points, not a single point. Here’s a proof of Lem. III.1:

L Py +ay) PNy +AY)) e (W) + Ay) - ()

p2(y) Ay Ay . )
PN ¢ ()]
~ o (f7 ) |(f ><y>|—|ff(f—1<y>>' X

This can be written in “shorthand” as follows: conservation of probability tells us that p;(z)Az = p2(y)Ay. Then,
p2(y) = p1(z)|Az/Ay|. Using Az ~ |(f~1)(y)Ay| gives the result (6). This is visualized in Fig. 2.

Ay ~ f'(z)Azx Ay

f(z + Azx) y+ Ay

f(z) Yy

Az Az~ (f71) (y)Ay

z z+ Az z 7Yy 7Yy + Ay) z

FIG. 2:Visualization of the change of variables for a one-to-one function f : R — R, in both z
coordinates (left) and y coordinates (right). Because the probability of z falling in the blue region
equals the probability of f(z) falling in the green region, the probability density ps of y must obey

p2(f(z)) = p1(z)/|f'(x)| (Lem. IIL1).
Remark III.2: Transformations that are not one-to-one

If the change-of-variables transformation f is not one-to-one, the preimage f~!(y) is a set of points, rather than
a single point. Thus it is necessary to modify the rule (6) to the following;:

1()
py)= Y (9)
e, @

This is visualized in Fig. 3.
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Ay
f(z)
)
y+ Ay
Axq Axo
—_— —_ —
1 x1 + Az T2 x2 + Az

FIG. 3:Visualization of the change of variables for a function f : R — R which is not one-to-one.
The total probability of x falling in the blue regions equals the probability of f(z) falling in the
green region. Thus computing ps(y) requires summing p; (x;)/|f’(x;)| for all z; € f~1(y) (Eq. (9)).

C. Moments and cumulants

Consider a probability space (R, P) with random variable 2 and probability density function p. Just as in the discrete
case (Def. I1.2), the nth moment u,, is given by the expectation value of z". It can be found using the characteristic
function, which has a definition analogous to the discrete version (Def. I1.3), but involving the probability density:

Definition III.4: Characteristic (moment-generating) function

The characteristic function (k) of a probability density p is defined as

(k) = / plx)e—*edz = (=) (10)

As in the discrete case, once we know the characteristic function, we can determine the moments using

O

pn = 1" o A(R) (11)

k=0

As in the discrete case, determining the p(k) is sufficient to determine p(z), and vice versa, via the continuous version
of the inversion formula:

Lemma III.2: Inversion formula

The probability density function p(x) can be found using the characteristic function p(k) using the inverse
Fourier transform

pa) = [ SEame (12)

As a consequence, two probability distributions with the same characteristic function are equal.

As in the discrete case, the cumulant-generating function In (k) = (e~%") can be used to determine the cumulants

Ky using

i = (") = (a(ik))nlnﬁ(k)

Now we will look at an example of a 1d continuous probability space, the 1-dimensional Gaussian distribution.

(13)

k=0
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D. Example: the 1-dimensional normal (Gaussian) distribution

In 1 dimension, the normal (Gaussian) distribution with mean A and variance o2 has probability density

p(x) = \/2;7%1)[—(962;2)\)2] :

It is useful to know the integral of a Gaussian function

/oo efa:r2+bm _ 2771—eb2/2a ) (15)
oo V a

The Gaussian distribution has characteristic function

[T dx (x—N)?2 [T dx (x — X +iko?)? k202

(17)

k2 2
—exp{—ik)\— g } .

2

The characteristic function of a Gaussian distribution with mean A and variance o“ is another Gaussian. The cumulant

generating function is then

k202
Y(k) =lnp(k) = —ik\ — 5 (18)
which, using Eq. (13), allows us all to calculate all the cumulants
(@)e=A, (D=0, @.=@Y.=...=0. (19)

All cumulants above the variance are zero. The converse is also true: when an arbitrary probability distribution has
zero cumulants at order > 3, it is a normal distribution. This will prove useful later.

Its moments can be found using the diagrammatic approach (Fig. 1), which is greatly simplified by the fact that
higher cumulants are zero. For example,

() =X, (@ =0+, (@® =3 A+X, ... (20)
Example ITI.1: Summary: 1-dimensional normal distribution

The normal (Gaussian) distribution p with mean X and variance o2, and its characteristic function p, are given
by

exp | = (2= 2)?/20°] 1202
p(x) = Noro , p(k) = exp [— ik — 2 } . (21)
Its cumulants are
(Tye = A, (). =02, (e =(xYe=...=0 (22)
and its moments are
(x)y =X, () =0+ X, @ =302A+X, ..., (23)

IV. N >1 CONTINUOUS RANDOM VARIABLES

We will quickly review probability spaces whose space of outcomes is the space of N-dimensional vectors; i.e. S = RV,
with random variable & = (z1, 22, ...,2x). Much of this is straightforward generalizations of the N =1 case.

10
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A. Definitions

Definition IV.1: Notation for integral over real vectors

Consider the function F : RY — R. Then, we denote the integral of F' over RY as
/deF(f) = / dxl/ dxy . . / deyF(F) . (1)

Definition IV.2: Joint cumulative distribution function

For a probability space (RY, P), the joint cumulative distribution function (CDF) Q : RN — R is defined
as

Q(&) = P((—00,z1] X (—00, 23] X ... X (—00,zN]) . (2)

In other words, it is the probability that the first variable is < x1, the second variable is < x5, etc. Note that if the
different coordinates are independent, then @ factorizes: Q(x1,...,2x) = Q(x1) ... - Q(xN).

Definition IV.3: Joint probability density function
For a probability space (RY, P), the joint probability density function p: R" — R is defined as
orQ

61'181'2 o ..(%N ’

(%) = (3)

Similar to the 1-dimensional case, this can be related to the probability measure P by the approximate relation

P([Jcl,xl + Axq] X [we, 22 + Axg] X ... X [zN, 2N + AmN]) ~ p(Z)Ax1Azy ... Axy . (4)

The expectation value of an observable F(&) can also be found using integration against p(Z), i.e. (F(Z)) =
J NP (@)p(3).

T’ll skip the change of variable formula for N > 1 dimension, but make a quick remark:

Remark IV.1: Change of variables for N-dimensional probability distribution

For a single variable, the change of variable formula is given by Lem. 1.1, a consequence of the conservation of
the probability within an interval. In N > 1 dimensions, probability is now conserved within a volume. So for a

small box B(Z) located at Z, we can say “p(Z)Vol[B(Z)] ~ p(f(f))Vol [f(B(f))]” This results in an analogous
formula where the derivative becomes the Jacobian determinant of f

—

(@) = L2

| det JTHA@)| )

However, this will likely not be necessary for this course.

B. Marginal and conditional probabilities

Sometimes, we are interested in the probability density function for only a few of the coordinates, e.g. (z1,za,...,Zar)
with M < N. This requires defining a new probability space with the following PDF"

11
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Definition IV.4: Marginal or unconditional probability density function
Let ¥ = (x1,72,...,2y) be a random variable from the probability space (RY, P) with probability density p.

Consider an integer M < N. The marginal or unconditional probability density function (PDF) for the
first M coordinates is given by

oy (T, .., x0) = /deH...dach(i") . (6)

Suppose we know the values of the first M coordinates, and are interested in the probability density for the last
N — M coordinates. For this, we define the conditional probability density function:

Definition IV.5: Conditional probability density function

Let ¥ = (x1,72,...,2n) be a random variable from the probability space (RY, P) with probability density p.
Consider an integer M < N. The conditional probability density function for the last N — M coordinates
is given by

p(x1, ..., TN) . )

_ TMA1lyee s TN|T1yewey TNf) =
P(N M)\M( F1ee s N[, ) oy (1, ., Tar)

Note the normalization: f drpryr - .- denpv—nnm = 1. This definition makes sense in light of the definition of the
conditional probability measure (Def. 1.4), but adapted for probability densities:

p(4,B)

p(A|B) = (B

(8)

Often, you will hear about two random variables being independent of each other, which is defined as

Definition IV.6: Independent random variables

For a probability space (R?, P) with random variable & = (x1,22) and probability density p, the variables x;
and xo are said to be independent, and p is said to factorize, if it is possible to write

plar,a) = pr(en)pa(az) . where piw) = [ dojuip(@) (9)

C. Moments and cumulants
Just like the 1-dimensional case, moments and cumulants can be calculated using the N-dimensional characteristic
function, p(k) = (e~***7). The moments are given by:
Definition IV.7: N-dimensional moments

The moments of an N-dimensional probability distribution are are given by:

e S e A e B A R
() xz..xN>—{zakl] [zaki [Zﬁlﬁv] (k)

This is evident once we Taylor expanding the moment-generating function:

0 ki ni koo )2 —ikn )N
! Z Z 3o “ k)™ ’N? (@hage . ) (11)

no! ny!

. where p(k) = (e T (10)

k=0

n1=0n2=0 ny=0
Likewise, we define the cumulants using the cumulant-generating function In p(k ) as follows:

12
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Definition I'V.8: N-dimensional cumulants

The cumulants of an N-dimensional probability distribution are are given by:

a1"[ o1™ a 1" -
(]t %2 % 2\ ) = |:Z8k‘1] [zaki {zakN] In p(k) . (12)
The relationship between moments and cumulants can then be written as
exp( i i k" k™ ( T %, i) ) i i i .. Fy (i WY . (13)
= my! mpy! 1 = = ny! ! ? N

This allows calculating the moments as sums and products of the cumulants. This relationship can again be simplified
with a graphical representation (see Fig. 1), but we will skip it here. It is useful, however, to know the 2nd-order
relationship:

(T * Tm)e = (XnTm) — (T ) (Xm) = COIT[Tn, Ty - (14)

This is easy enough to check using Eq. (13). This defines the notion of correlation between variables x,, and x,,. If
Zn and x,, are independent random variables, Corr[z,, z,,] = 0.

Now we will look at an example of a N-dimensional continuous probability distribution: the Gaussian distribution.

D. Example: the N-dimensional normal (Gaussian) distribution

In N > 1 dimensions, the Gaussian distribution with mean X and symmetric, positive-definite correlation matrix C
takes the form

o exp[—(f—X)chl(f—X)/z] B )
pE) = J@mN det ] ~ /e Ndetc ¥

We can understand the normalization as follows: C can be diagonalized by a unitary matrix, which we denote by
U. Write the diagonal matrix of its eigenvalues as A, so that C = UAUT and C~' = UAUT. We also have
detC = det A. Then, define § = f (#) = UT(Z — X). This transformation has unit Jacobian determinant, the change
of variables is simply p(Z) = pg(f F(Z)), where

B %Z(Cil)mn(xm - ,U'm)(‘rn B ,LLn) ! (15)

m,n

(_’) exp |: - 17‘1" y/2:| ﬂ Un/ZArm (]_6)
P = JemNde ] A VAL,

This is the product of NV 1ndependent properly-normalized Gaussians; thus its integral with respect to ¢ is 1. Then,

the integral of p(Z) = py(f F(¥)) with respect to # must also be 1, again because the change of variables from 7 to & is
unitary.

The characteristic function can be found via a similar computation:

exp [ —(@-NTCHT - N)/2 — ik - f} exp [ — FTATYG/2 — kT (UG + X)}
o) = [ d'z ~ [aig (17)
(2m)N | det C| (2m)N | det A|
Defining ¢= Z/{TE, we have
- exp |: - QTA y/2 - Zq - Zk’ )‘} N exXp [ - y?z/2Ann - iQnyn - an/\n]
o) = [ V7 11 / (18)
(2m)N| detA| it 21A
N 2
_EXp|: Z Ann:| —exp{ Z Umnuénk k[Ann:| —exp[zk)\ Z knCankm} ,

n,m,t n,m,t
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V  SUMS OF CONTINUOUS RANDOM VARIABLES

giving finally

B} . FCE
plk) =exp | —ik- X — 2C (19)
We can thus easily find the joint cumulants of the variables
<xn>c =An <1'n * xm)c =Cmn - (20)

The elements of the correlation matrix are exactly the correlations between x, and x,,. Again, all other higher
cumulants are zero.

The moments can be found using the diagrammatic method (which we didn’t discuss for N > 1), or by hand

starting with Eq. (13). However, in the zero-mean case where X = 0, there is a useful formula which can be deduced
diagrammatically or from Eq. (13).

Theorem IV.1: Wick’s theorem

Suppose T is a zero-mean Gaussian random variable with correlation matrix C. The moments are given by

(@i 00 oo = 00 UL Gy o (21)

Pm (4,)€Epm

where p,, is the set of all possible pairings of {1,2,...,m}.

For example,

(r1222324) = C12C34 + C13C24 + C14Ca3 . (22)

These definitions and results are summarized below:

Example IV.1: N-dimensional Gaussian distribution

In N > 1 dimensions, the Gaussian distribution p with mean X and correlation matrix C, and its characteristic
function p, are given by

e |- @-X)Tci@E- N2 . L RTCR
p(Z) = @)V [deiC] , Ak)=exp| —tk-A———1. (23)
Its cumulants are
(@Bo)e = Mo ¢ @B = Brpde = Cogp ¢ (T * Ty % g .. e =10. (24)

If X = 0, the moments can be found using Wick’s theorem (Thm. IV.1).

V. SUMS OF CONTINUOUS RANDOM VARIABLES

Consider a 2-dimensional probability space (R?, P), with probability density p and random variable ¥ = (x1,x2).
Consider a new random variable X = x7 + 2. What is the probability distribution px of X7

For this, we can use the helpful identity

y= @) = pyy) = / 4z (y — F(2)ps(@) = 6y — F(@))z (1)

which gives

px(X) = /diﬂl /d$25($1 +x2 — X)p(x1,22) = /d;ﬂlp(xl,X —x1) . (2)
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V  SUMS OF CONTINUOUS RANDOM VARIABLES

The characteristic function takes on the nice form

px (k) = (=) = /prX(X)e_ikX = /dX(/dm/d:rch(xl + 29 —X)p(:chxg))e_ikx (3)
= /dxl/dxgp(xl,xg)e_ik(““'z?) = p(k, k) . ()

It’s simply the characteristic function of the original distribution, with each entry evaluated at the same k.
[End of recitation 2]

Now consider a probability space of arbitrary dimension N, (RY, P) with probability density p and random variable

Z = (z1,...,2n). Consider the random variable X = Zi\;l x;. Its probability distribution px and characteristic
function px are then, similarly,

N

pX(X):/dep(f)(S(X—Z )—/(H dxz) (1,...,eN—1, X =21 — ... —TN_1) (5)
k;):/prX(X /dX/dN (X Zmz>elkx /dN o(Z)e R 2im = j(k.k,... k). (6)

=1

Thus, we can use the cumulant generating function

al (—ik)?
lnﬁX(k):lnﬁ(k,k,...,k):—ikz<xi>c+ S > wixag)et ... (7)

to calculate the cumulants of X, such as

N N N
(X)e = (e, (Xe= D (mixzj)e, = > (wiraj ). o (8)
i=1 i,5=1 i,5,k=1

A. Sums of independent random variables

A common case is when the random variables z; are independent, i.e. p(Z) = vazl pi(x;) with characteristic function
p(k) = Hiv:1 pi(k;). Then, cumulants linking different variables are zero, and the cumulants of their sum X (Eq (8))
reduce to

N
x; independent = (X").= Z(I?% . 9)

=1

Suppose the variables z; are, moreover, identically distributed. So, we say they are independent and identically
distributed (iid). Then, we have

ziiid =  (X").=N(").. (10)

1
This generalizes the result we found for the binomial distribution: The mean and variance are both proportional to
N. Consider a new random variable, Y:

Y=—"—F—+—+—. (11)

All cumulants of Y scale like N, and therefore the nth cumulant of Y scales like N/(v/N)* = N*="/2. In the limit
as N — oo, only the variance remains; all other cumulants approach zero. But the only probability distribution
with zero cumulants above 2 is the normal distribution! We have just proven a weaker version of the central limit
theorem:
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A PROOF: DIAGRAMMATIC SHORTHAND FOR CUMULANTS

Theorem V.1: Central limit theorem
Consider N identically distributed random variables {z;}. Suppose their correlations are weak enough so that

N N
Z D ma k k) < O(N™?) (12)
i1 =1 B =1l

Then, the probability density of their sum approaches a Gaussian distribution:

iy %N<z>c> _

Appendix A: Proof: diagrammatic shorthand for cumulants

Here we prove the diagrammatic shorthand for writing the moments of any probability distribution in terms of its
cumulants, first defined in Sec. II B.

The cumulants can be written in terms of the moments by exponentiating its Taylor series ¥(k) = > %kmlﬂ?m
and absorbing —i into k£ by replacing k& — —ik, to find

o] Em R o) En
exp | 305 ] = o0 [0(0)] = 00 = 3 (A1)
m=1 n=0
We can further re-write the exponential
> o | 30 S| = Lo [Sea] = TS () )
n=0 m= 1 m=1 m=1 £=0
For each n, define the set Z,,, which represents all the unordered partitions of {1,...,n}:

(oo}
Inz{{zl,eg,...}‘ Zmzm:n}. (A3)
m=1
Here are some examples for small n:

7 = {{1,0,0,...}} (
7, = {{0,1,0,0,...},{2,0,0,...}} (A5
7 = {{0,0,1,0,0,...},{1,1,0,0,...},{3,0,0,...}} (
I, = {{0,0,0,1,0,0,...},{1,0,1,0,0,...},{0,2,0,0,...},{2,1,0,0,...},{4,0,0,...}}. (

Think of each set in Z,, as representing a different way to put n points into ¢; bins of size 1, ¢5 bins of size 2, etc.
Then,

i nl
Z ,/in Z Y H Z > H R T (mly ot (A8)
n=0 n=0 {E,,L}GI,Lm 1 n= 0 {ém}eI m=1 m=1

n!

Z H Kbm T )it m") e (A9)

{t,}€1,, m=1

The combinatorial factor gives the number of ways to put n items in #; bins of size 1, {5 bins of size 2, etc. without
caring about the order within each bin (hence the 1/m!) or the order of equal-sized bins (hence the 1/¢,,!). This
brings us to our diagrammatic shorthand, shown in Fig. 1 for the first four moments.
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